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Three Phase Transformer Winding Configurations and  
Differential Relay Compensation 

 
Larry Lawhead, Randy Hamilton, John Horak 

Basler Electric Company 
 

Most engineers have some familiarity with two commonly known delta connections that give 
either a +300 or - 300 phase shift of positive sequence voltages and currents, and just these two 
configurations seem to cause extensive confusion. There are actually many other ways to 
configure a wye or delta that give other phase shifts, and to further complicate matters, there is 
the occasional zigzag winding application and the additional confusion over what occurs when 
CTs are connected in delta. These alternate transformer winding configurations are sometimes 
referred to by terms such as Dy# or Yy#, or Yd#, Dz#, and Yz#, and where the # can be, 
seemingly, almost any hour of the clock, hence the term “around the clock” phase shifting is 
sometimes heard. The paper will review the variety of possible winding configuration and give 
examples of the nomenclature that is used with them and how these various phase shifts are 
created. 
 
The paper will also show how a transformer differential relay compensates for the effects of the 
various transformer winding configurations, as well as account for delta CT configurations. Many 
papers and instruction manuals refer to compensation in terms of phase shifting. This leads 
engineers to have a vague and misleading understanding that the relay is somehow phase 
shifting currents to compensate for the transformer phase shift. While a “sequence component 
differential” relay might be able to work this way, most transformer differential relays work 
outside of the sequence component domain and do some form of current balance calculation in 
the ABC domain. 

Basic Transformer Design Concepts 

Before proceeding, let us review a few points on transformer design and review some 
nomenclature that will be used in the paper.  
 
Since this paper is aimed at describing transformers that use phase shifts and winding designs 
that are more commonly found outside the US market, the phase and bushing names of U, V, 
W, will be used generally, rather than A, B, and C, or H and X. The means of specifying phase 
shift and transformer connection will be the D-Y-Z + clock method. For instance, a transformer 
connection will be Dy1 rather than a DAB/Y, though some dual designations will be used for 
clarity.  
 
If one browses transformer sales literature, technical papers and books, and industry standards 
such as IEEE C57.12.00 and IEC-60076-1, one will find many variations on the nomenclature 
and figures used to show how the phases are identified in a three phase system. Figure 1 is a 
composite of some of the identification methods that will be found. Besides the terms seen in 
Figure 1, the terms R, S, and T are used in some sources to name the phases. Also, various 
color schemes are used. Some use of the colors black, red, and blue, or brown, orange, and  
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yellow to reference the phases. White is sometimes used rather than blue, but white is also 
commonly used for neutral in low voltage applications too. Green or bare copper is generally 
used for a ground conductor. 
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Figure 1 - Example Transformer Symbology and Terminations 
 
Many times the figures that are used to model a transformer and show its connections do not 
clearly indicate which windings share a common core leg, and do not clearly indicate the polarity 
of the coupled windings, at least to the first time reviewer. To make the winding polarity more 
evident in this paper, a variation of the drawings above will be presented that makes it clearer 
where the polarity of the windings is and which windings share a common transformer leg. See 
Figure 2. 
 
We need to define the term “Winding” to avoid confusion. In various sources the term winding 
can refer to either a single continuous coil of wire on a single core leg, or collectively to a 3 
phase set of windings connected to the 1U, 1V, and 1W bushings, or even the group of 
windings associated with a particular phase. Herein, a “winding” is a single continuous coil of 
wire on a single core leg, a “winding set” is the set of three windings that constitute the three 
phases, each on different core legs, with a common terminal voltage level (e.g., 1U, 1V, and 
1W), and a “phase set” will refer to the two or more windings that are found on a common core 
leg. See Figure 2. 
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The windings in the transformer figures are given the terms W1-9. The winding sets associated 
with the various voltage levels, each on a different core leg, are: 
 Winding Set 1: W1, W2, and W3 
 Winding Set 2: W4, W5, and W6 
 Winding Set 3: W7, W8, and W9 (only seen herein in zigzag transformers). 
 
The windings sharing a common core leg are: 
 Core Leg 1: W1 and W4 
 Core Leg 2: W2 and W5 
 Core Leg 3: W3 and W6 
 (Windings W7, W8 and W9, used herein for zigzag windings, are hard to classify into a 

particular leg since zigzag windings cross-connect core phase legs.) 
 (In the figures, core leg 1 is abbreviated as ΦA, core leg 2 as ΦB, and core leg as ΦC.) 
 
The windings by themselves are passive devices and which winding is given the number W1, 
W2, or W3 (or W4, W5, W6, W7, W8, or W9) will not matter initially, but it will matter when we 
connect the second set of windings to the various bushings since this will affect phase shift of 
positive (and negative) sequence voltages across the transformer. 
 

 

Figure 2 - Basic Transformer Representation 
 
The paper will show the balanced transformer output current in terms of the flux in the core that 
is due to load current, which invites discussion on how load flux distributes in a core. There are 
two issues with core design that affect differential relaying.  
 
First, we normally think in terms of power flow in a transformer as staying within a phase set 
(i.e., current in a single phase on the secondary of a three phase transformer will generate 
current in the primary only of that same transformer leg), but this is not always the case. 



4 

Normally when current flows in the secondary winding, it generates a flux in that leg and an 
equal but opposing flux is generated by load current flowing in the primary on that same phase 
leg so that the level of excitation flux remains constant. However, in a three phase transformer 
where all phases are magnetically linked, there is some coupling and power transfer between 
the phases, especially in the 3 legged core design. The inter-phase coupling provides a 
mechanism where an external fault on one phase can cause current on unfaulted phases and is 
part of the limitation on sensitivity of a transformer differential relay.  
 
The highest inter-phase coupling occurs in a three legged core transformer. Note that in a 3 
legged core all flux that leaves a leg must pass through another leg or air. Examine Figure 2. 
Assume some current flows in the W4 winding. This current will tend to create flux in a direction 
that demagnetizes the W4 core, resulting in lower back e.m.f. on the W1 primary. Since in this 
core the flux in the ΦA leg divides between the ΦB and ΦC legs, the W2 and W3 windings could 
supply the current/flux to counter the W4 load. However, W4 is generally wired directly under or 
interleaved within W1, so the W1/W4 coupling is stronger than W2/W4 or W3/W4 coupling. Also, it 
can be shown that the source that will supply the load current with the least reactive current flow 
is W1. Hence virtually all the current required to counter the W4 load flux will come from W1. If 
current did come from W2 or W3 the transformer differential relay would tend toward tripping.  
 
In the 4 legged and core form designs, there are flux paths that allow flux to flow without 
entering other phases, so each phase is more independent of what is occurring in the other 
phases and is indicated in Figure 2 as the zero sequence flux path. In the 5 legged / 4 core 
designs, where each phase winding encircles two cores, used mostly on low cost distribution 
transformers, the two outside phases are fairly independent of each other, but the inside phase 
can be affected by events in either of the two outside phases.  
 
Directly related, a significant difference between core designs that can affect differential 
protection is whether the core can support zero sequence voltage. If there is no independent 
zero sequence flux path, as in the three legged core design, and zero sequence voltage is 
applied to the windings, the excitation flux is forced to travel through air to complete the flux 
circuit. Excitation current will be very high and can make a transformer differential operate. This 
high excitation current is sometimes masked in differential relays by schemes that filter zero 
sequence current from the differential relay. This can be done by connecting CTs in delta, or in 
numeric relays, by algorithms that measure zero sequence current entering the windings and 
subtract it from the differential analysis. The ability to remove the zero sequence current 
mathematically in modern numeric differential relays has reduced the motivation to connect 
differential relay CTs in delta in most applications. 
 
While the connection diagrams to follow will generally show a three legged core, this is only for 
convenience. The connection diagrams are applicable to either 3x1 phase designs or any three 
phase core. In all designs, the windings for any given phase are still on a common leg of the 
core. 

Positive Sequence Phasing and Even More Possible Winding Configurations 
The entire paper assumes positive sequence phase rotation and that all the configuration 
diagrams were built on positive sequence phase rotation. There are actually more connections 
than listed if one wishes to do phase rotation changes within the transformer by swapping two 
phases on only one side of the transformer and leaving the third in place in a way that would 
convert positive sequence voltage on one side of the transformer to negative sequence voltage 
on the other side. This seems a fairly remote possibility. 
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Transformer Winding Configurations 
There are 4 basic winding configurations for the typical large 3 phase power transformers: delta, 
wye, auto, and zigzag. Within the delta, wye, and zigzag groups, there are multiple means of 
creating the winding configuration. There is some help available in that only a few versions of 
each show up in regular practice, but this does not rule out any version showing up in one’s 
work (or from a relay manufacturer’s point of view, showing up in the relay application) so the 
possibility should not be excluded from one’s plans. Scott T and mid-winding tapped delta 
transformers are not considered herein. 

External vs. Internal Connections 
The paper mainly is attempting to analyze the internal connections to the transformer, i.e., what 
occurs behind the bushings and is unchangeable by the end user. However, the diagrams also 
can be seen as representations of some forms of external phase connection shifts. For 
example, in typical practice in the U.S., phases A, B and C connect to bushings H1, H2 and H3 
and X1, X2 and X3, respectively. However, in some applications it may be convenient to shift 
connections and connect A, B and C to H2, H3 and H1 and X2, X3 and X1, respectively. 

Wye Winding Configurations 
Given three windings, named W1, W2, and W3, and three transformer phase bushings named U, 
V, W, and a neutral bushing N, and assuming a positive sequence rotation is to be maintained, 
there are 6 different ways the windings and bushings can be interconnected, as shown in Figure 
3. Of the 6 variations of wye connections listed, in actual practice almost all connections can be 
seen in terms of Y0 or Y6. As previously mentioned, which winding is given the number W1, W2, 
or W3 will not matter initially, but we need to keep track of which winding is connected to which 
bushing so that when we connect the second set of windings we will know the positive 
sequence phase shift across the transformer. 
 
Phase Shifts Using Clock Notation 
Note the use of Y# for naming each of the configurations. The # refers to the phase angle, as 
viewed on a 12 hour clock, of winding W1 relative to the voltage applied to the U bushing with a 
balanced 3 phase positive sequence voltage (UVW or ABC sequence). Note also the phasor 
diagrams in Figure 3 that show the phase angle between the W1 winding and the voltage on the 
U bushing. The relationship between the W1 voltage and the U bushing will become important 
when one needs a common reference for determining phase shift across the transformer. One 
finds the phase shift by lining up the W1 voltages on different sides of a transformer and seeing 
how the U bushing voltages on each side compare.  
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Figure 3 - Six Ways to Wire a Wye Winding 

Delta Windings Configurations 
Given a set of 3 windings W1, W2, and W3, and three transformer phase bushings U, V, W, and 
again assuming that positive sequence rotation is to be maintained, there are 6 ways the 
windings and bushings can be interconnected, as shown in Figure 4. Again, some of the 
methods would not be seen in normal practice. The most common ones would be D1 (= DAB in 
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common US market terminology) and D11 (= DAC in common US market terminology). The D5 
and D7 configurations are seen in some documentation of transformer connections in the 
international market. 
 

 

 

Figure 4 - Six Ways to Wire a Delta Winding 
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Auto-Transformer Winding Configurations 
There is no flexibility in how an auto-transformer is wired. The only way to obtain a phase shift is 
to rename the phases from one side to another, but this is quite uncommon; i.e., given a phase 
set of W1 and W4, then if 1U is connected to W1 then 2U would almost invariable be connected 
to the W4.  

 
 

Figure 5 - An Auto Transformer Winding. 
 
The auto-transformer will not be dealt with any further in this paper. The auto-transformer can 
be treated as a simple wye-wye transformer for current differential calculations. Phase shift in 
any delta tertiary connection would be treated as a separate delta/wye connection. 
 

Zigzag (Interconnected Star) Winding Configurations 
In much literature on transformers, the term “interconnected star” is used in lieu of “zigzag.” 
However, most engineers in the power engineering business know with at least a little familiarity 
what is meant by zigzag and this term will be used herein. Zigzag transformers do not see much 
application in the US. Most engineers are familiar with a zigzag transformer from its application 
as a ground reference on an ungrounded system. The wye/zigzag transformer is apparently 
used in some distribution applications due to the lower cost of a high voltage primary wye 
winding versus a similar voltage delta winding. When the primary is ungrounded wye, the 
secondary needs to be zigzag in order to remain an effectively grounded secondary. The zigzag 
winding also is used for obtaining non-standard phase shifts. It is capable of delivering 
secondary power with 00, +/-300 or +/-600 phase shifts relative to the primary, depending on 
primary winding configuration.  
 
A zigzag winding is a series connection of two windings whose voltages are 600 out of phase. 
The two windings are typically the same voltage magnitude, but custom phase shifts can be 
created if the voltage magnitude of the two windings differs. There are two basic ways to create 
a zigzag winding:  
 Connect the U leg in series with V leg (called a ZUV or a ZAB) or 
 Connect the U leg in series with W leg (called a ZUW or a ZAC) 
The polarity marks of the two windings either face toward one another or face away from one 
another. In order to get other phase shifts, some configurations may invert polarity connections, 
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change which side of the winding the bushings are connected to, or introduce a 1200 phase shift 
by swapping the U, V, and W bushings connections. 
 
The inter-phase coupling that a zigzag winding creates results in primary current patterns that 
may be quite unlike what one expects with delta and wye primary windings. Unless a delta 
tertiary is provided, the primary of a three legged core zigzag transformer cannot supply current 
that will create zero sequence flux in the core. Even if the primary is connected in delta, the 
winding cannot support ‘circulating I0’ since this creates zero sequence flux. For example: 
Assume a zigzag secondary and a 1 per unit line to ground fault on the zigzag side. If the 
primary were wye (see Figure 18), then the current is 1pu on one phase lead, and -1pu on 
another, similar to a delta/wye bank response. However, if the primary were delta (see Figure 
19), the current in the lines feeding the primary will see 2 pu current on one phase and -1 pu on 
the other two phases, similar to what would be seen for a “double delta” transformation. If power 
is to flow from the zigzag side to the wye or delta side, a zero sequence flux path or a buried 
tertiary may be necessary for the transformer to carry any unbalanced loading, even for phase 
to phase unbalance on a delta primary.  
 
A zigzag winding used as a grounding bank is shown in Figure 6. When a phase U line to 
ground load is applied, the current in the load will want to return via windings W4 and W3. 
Current in W4 and W3 will demagnetize the two respective core legs, which will in turn allow 
phase to ground voltage on the W and V to cause current flow in W1 and W6 to restore a flux 
balance condition. The net effect is that equal current flows in every phase of the zigzag bank, 
which constitutes zero sequence current into the system.  
 

 

Figure 6 - Zigzag Grounding Bank 
 
Given the 6 windings and three bushings associated with a zigzag winding configuration, there 
are actually 24 different winding configurations connections that could be made. Again, there 
are two general types, ZUV (=ZAB) and ZUW (=ZAC), defined by how the two sets of windings are 
interconnected and can be seen by inspection of Figure 7. Figure 7 shows what appears to be 
the more common variations of ZUV and ZUW but note that a 1800 inversion of each is possible by 
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simply inverting the neutral and bushing connection ends, giving 4 more possible variations of 
ZUV , ZUW or inverted ZUV- or ZUW-. See figures for examples. For each R1 and R2 swap of the U, 
V, and W bushing connections one should be able to see 8 more similar variations of the zigzag 
winding.  
 
To fully define a zigzag connection one needs to specify both the phase shift and whether it is a 
based on ZUV or ZUW. For example, an inspection of Figure 7 will show it is possible to get a Z1 
(300) phase shift by either the Z1UV connection shown in Figure 7 or by starting with a Z5UW 
connection and then introducing a 1200 phase shift by appropriate U/V/W swapping.  
 

 

Figure 7 - Four Ways to Wire a Zigzag Winding 
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Combining the Various Winding Configurations 

An exhaustive listing of all the possible permutations of transformer winding configurations is not 
worth presenting. Only a small percentage of all the possible winding configurations is 
commonly found in practice, and many are effectively redundant views of the same 
configuration. More complete wiring and phasor diagrams of some of the common 
configurations are given below in figures 8-19 and the rest can be analyzed as needed, using 
the material as a starting point. Except for the two cases of zigzag windings, only transformers 
with two basic voltage levels are covered. A somewhat extensive list of the more common 
configurations is found in [1] IEC60076-1, Power Transformers. Figures 20 and 21 are drawn 
from this standard without the details of Figures 8-19 but annotated with some additional 
information.  
 
In the figures to follow, the phasor diagrams found more commonly in US practice are shown on 
the left, and phasor diagrams that might be more like those found in international practice are 
shown on the right. Polarity marks have been added to the US practice phasor drawings. The 
winding diagram in the lower left is intended to show most clearly how the windings would be 
interconnected, using US practice bushing names. The figure on the lower right shows a 
common international method of showing the winding connections, except the method has been 
modified by the addition of polarity marks and winding numbers, and in these figures, when 
zigzag windings are shown, one winding set is shown with the polarity mark up, and the other 
with the polarity mark down, so that it is easier to see the interconnection of the windings, 
compared to IEC drawing practices.  
 
To determine the phase relationship of positive sequence voltage and current between primary 
and secondary, use the W1 phasor as the common reference for each winding and compare the 
resultant angle between the U phasor on each winding. The angular relationship will be the 
primary angle minus the secondary angle, on a 12 hour clock. The naming convention given to 
each of the windings also can be used to determine the phase shift during normal conditions. 
Consider these examples: 
 

Dy11: D11(UW) pri., Y0 sec. 
 Phase shift: +11-0 = +11, or -1. The sec. lags the pri. by 3300 or leads the pri. by 300 
DzUV2: D1(UV) pri., Z11(UW) sec.  
 Phase shift: +1-11 = -10, or +2. The sec. lags the pri. by 600 or leads the pri. by 600 

Dy7:  D1(UV) pri., Y6 sec.  
 Phase shift: +1-6 = -5, or +7. The sec. lags the pri. by 2100 or leads the pri. by 1500 
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Figure 8 - Yy0 (Y0 - Y0) 

 
 

 
 

Figure 9 - Yy6 (Y0 - Y6) 
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Figure 10 - Dy1 (D1(=AB) - Y0) 
 
 

 
 

Figure 11 - Dy11 (D11(=AC) - Y0) 



14 

 
 

Figure 12 - Dy5 (D11(=AC) - Y6) 
 
 

 
 

Figure 13 - Dy7 (D1(=AB) - Y6) 
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Figure 14 - Yd7 (Y0 - D5) 
 
 

 
 

Figure 15 - Yd11 (Y0 - D1(=AB)) 
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Figure 16 - Dd0 (D11 - D11) 
 
 

 
 

Figure 17 - Dd2 (D1(=AB) - D11) 
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Figure 18 - Yz11 (Y0 - Z1(UV/AB)) 
 
 

 
 

Figure 19 - Dz2 (D1(=AB) - Z11(UW/AC)) 
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Figure 20 – Common connections (IEC 60076-1). 
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Figure 21 – Additional connections (IEC 60076-1). 
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Differential Relay Current Balance Equations 
Modern numeric transformer differential relays need to be able to work with the many 
permutations of how a transformer could be configured, as well as work with connecting the CTs 
in delta. The practice of connecting CTs in delta is usually unnecessary when a multifunction 
microprocessor based differential relay is utilized. However, in retrofit applications there is some 
tendency to leave existing wiring in place, which results in continued use of delta CT 
connections (e.g., when the 4th wire required to connect CTs in wye was not provided in the 
original installation).  
 
To see how relays work with any form of transformer or CTs, the paper will work toward viewing 
a transformer differential relay as a device that monitors flux balance on each transformer leg, 
looking only at the flux due to load level, or higher, currents. Except for inrush conditions, 
excitation current is too small (<3% of self cooled current ratings) to be seen by the differential 
relay, so the relay sees only the load or fault level currents and effectively monitors that the flux 
this load current produces balances to zero. In normal operation, on a per phase basis, the flux 
created by the load current on a given winding will be countered by an equal and opposite flux 
created by the source winding on that same transformer leg, for a net of no change in flux levels 
in the leg relative to normal excitation levels. The matter of flux not summing to zero on a leg 
due to power transfer between phases due to magnetic coupling between phases (and in the 
case of zigzag windings, due to winding interconnections) was discussed at the start of the 
paper, under “Basic Transformer Design Concepts,” and also under the description of zigzag 
windings. 
 
The flux that would be associated with load level currents on any one winding, and calculated 
via the equations to follow, would be on the order of a hundred times the current required to 
saturate the transformer. Fault currents would be even a higher multiple. However, since for any 
current/flux on one phase an opposite current/flux arises on another phase so that transformer 
net flux remains at normal excitation levels, saturation does not occur. 
 
Let us apply the flux balance equation to a transformer with 3 phases, 6 windings, and two 
winding sets, primary and secondary. Each winding will produce a flux that is proportionate to its 
load current. The flux levels will be: 
 

 
1 Pr i C 1

2 Pr i C 2

3 Pr i C 3

N k I

N k I

N k I

ϕ =
ϕ =
ϕ =

           
4 Sec C 4

5 Sec C 5

6 Sec C 6

N k I

N k I

N k I

ϕ =
ϕ =
ϕ =

 (1) 

where N1 and N2 are the number of turns in winding set 1 and 2, and kC is a proportionality 
constant that would be specific to the core, most notably the cross sectional dimensions and 
permeability. This kC factor will cancel out of the current differential equations so we do not need 
to know its specific value. We can invert the concepts of (1) to state the current in terms of the 
core flux in each leg of the transformer, and we can start to introduce matrix representations of 
the equations. For winding set W123: 
 

 
W1 1 1

W 2 1 2

W3 1 3

I k 0 0

I 0 k 0

I 0 0 k

ϕ

ϕ

ϕ

  ϕ   
    = ϕ    
    ϕ    

 (2) 

 
where: 
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 1
Pr i C

1
k

N kϕ =  (3)  

 
The equations for W456 are similar. In a condensed matrix math form, (2) becomes more 
compact: 
 
 123 φ,Pri 123I = k ×φ  (4) 

 
This format will be used extensively in the coming material. It might be noted that when an 
equation is bold it indicates that the elements in the equation represent matrices, not simply 
constants. Also, a bold multiplication symbol, x, indicates the multiplication of matrices using 
appropriate matrix math. 
 
Recall the above equations are referring to load flux, not excitation flux. For load induced flux, 
we can assume that in each leg of the transformer the flux that is caused by load current sums 
to 0 in normal operation. The equations are:  
 

 
W1 W 4 

W2 W5 

W3 W 6 

Phase Leg 1:   0

Phase Leg 2:   0

Phase Leg 3:   0

φ + φ =
φ + φ =
φ + φ =

 (5) 

 
The equation assumes the summation (not the difference) of the flux is zero. There is a parallel 
with how currents will be handled. In the equations to come, we will assume a positive current 
generates positive flux, so in the current differential function, the error current is the summation 
of currents coming into the relay. 
 
 Using the abbreviated matrix form of (3) this equality can be stated as: 
 
 123 456φ +φ = 0  (6) 

 
or alternatively, we can say that on each leg that the ratio of flux from the two core flux sources 
(e.g., W1 and W4) is -1. 
 
The current that is delivered by the transformer is the flux times the appropriate kφ factor (2). 
This current on the two sides of the transformer will differ in the inverse of the transformer turns 
ratio (3) so we need to multiply across by the turns ratio in the manner seen below. Using the 
abbreviated form of (4) and (6) the equation that represents normal operation is: 
 
       Pri φ1 123 Sec φ2 456N ×k ×φ + N × k ×φ = 0  (7) 

 
Putting this equation into a more recognizable form, if we expand (7) and cancel the common kC 
factor from (3) we obtain the current balance equation: 
 

 
Pr i W1 Sec W 4

Pr i W 2 Sec W5

Pr i W3 Sec W 6

N I  N I 0

N I  N I 0

N I  N I 0

+ =
+ =
+ =

 (8) 
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In a wye/wye transformer with no phase shift of positive sequence voltages and currents, Yy0, 
the bushing currents are equal to the winding currents (I1U = IW1, I1V = IW2, I1W = IW3, I2U = IW4, I2V 
= IW5, and I2W = IW6), equation (8) tells us how to sense flux balance. The balanced condition can 
be directly measured by a differential relay that only monitors by a simple ratio difference. (A 
real world transformer differential relay would also need to have a “block for inrush detection” 
algorithm as well.)  
 
For any other winding or CT configuration than Yy0 we need a systematic method of creating 
“phase compensation” equations so that various combined or inverted winding currents on the 
relay inputs will be recognized as a balanced condition. To proceed, we need to determine the 
current seen at the transformer bushings and the relay for any given winding and CT 
configuration. 

Negative Sequence Transformation 
Before proceeding, some acknowledgement should be given to the fact that there are even 
more possible wye and delta connections than listed, if one opens up the thought process of 
swapping two phases at a time rather than three, on only one side of the transformer, in which 
case one transforms positive sequence phase rotation to negative sequence phase rotation 
across the transformer. Since this transformation would not be done in normal practice, it was 
not considered in development of this paper. 

Wye Winding Transformations 
There are 6 ways to connect a wye winding, as described earlier. Each modifies the W1, W2, 
and W3 (or W4,5,6,etc.) current by some transformation factor. For instance, if we connect the U, V, 
and W bushings to the non-polarity side of windings W1, W2, and W3, respectively, as is done in 
the Y6 connection, we have effectively multiplied all currents by -1. Each connection method has 
its own transformation effect.  
 
The equations below state the effective transformation in a mathematical format. This format will 
be useful when there are several transformations in series and we need to multiply them 
together to find the total effect. The equations give the current that will be seen on bushings U, 
V, and W for a given current in W1, W2, and W3, but where current is stated in terms of IW =kφφ. 
and kφ is as given in (3). All equations relate IUVW to φ123 because the flux generated by the load 
current on each leg is the common element for all winding sets.  
 
There are six 3x3 matrices that represent how the winding currents could be transformed by the 
various wye connection. In the condensed matrix equations on the right side, it can be seen that 
only four matrix transformations, 1, -1, R1, and R2, are needed to represent the 6 wye 
transformation matrices. The value of this reduction in possible transformations will become 
clearer when delta and zigzag windings are analyzed further below. The R1 and R2 
transformations “rotate” the bushing and winding connections. Given currents I1, I2, and I3, the 
effect of each rotation is to say: 
 

 
0 new old new old new old

1 1 3 2 1 3 2

0 new old new old new old
2 1 2 2 3 3 1

R  (120  CCW shift): I I I I I I

R  (120  CW shift) : I I I I I I

= = =

= = =
 (9) 

 
The matrix form of (9), R1 and R2, will be seen in the equations to follow. In the equations to 
follow, note a positive flux generates a positive current. 
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Wye Transformations 
 

 Y0 (Direct connect): 
U 1

V 2

W 3

I 1 0 0 k 0 0

I 0 1 0 0 k 0

I 0 0 1 0 0 k

ϕ

ϕ

ϕ

  ϕ     
      = ϕ      
      ϕ      

 UVW φ 123I = 1× k ×φ  (10) 

 

Y4 (R2 phase swap): 
U 1

V 2

W 3

I 0 0 1 k 0 0

I 1 0 0 0 k 0

I 0 1 0 0 0 k

ϕ

ϕ

ϕ

  ϕ     
      = ϕ      
      ϕ      

 UVW 2 φ 123I = R × k ×φ  (11) 

 

Y8 (R1 phase swap): 
U 1

V 2

W 3

I 0 1 0 k 0 0

I 0 0 1 0 k 0

I 1 0 0 0 0 k

ϕ

ϕ

ϕ

  ϕ     
      = ϕ      
      ϕ      

 UVW 1 φ 123I = R ×k ×φ  (12) 

 

Y6 (Negated Y0): 
U 1

V 2

W 3

I 1 0 0 k 0 0

I 0 1 0 0 k 0

I 0 0 1 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW φ 123I = -1× k ×φ  (13) 

 

Y2 (Negated Y8): 
U 1

V 2

W 3

I 0 1 0 k 0 0

I 0 0 1 0 k 0

I 1 0 0 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 1 φ 123I = -1× R ×k ×φ  (14) 

 

Y10 (Negated Y4): 
U 1

V 2

W 3

I 0 0 1 k 0 0

I 1 0 0 0 k 0

I 0 1 0 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 2 φ 123I = -1× R ×k ×φ  (15) 

 
where kφ is as defined by (3) for the particular winding. 
 
Note that every matrix can be written of as the negative of one of the other matrices in the list, 
as noted in the left column. If one says a negated transformation matrix is not unique, there are 
really only 3 unique matrices above. 

Delta Winding Transformations 
If we connect a winding in delta, the current seen by the relay is a summation of two phase 
currents. There are two basic forms of a delta, D1 connection (i.e., a DAB connection), and a D11 
connection (i.e., a DAC connection). Given currents I1, I2, and I3:  
 

 
new old old new old old new old old

1(AB) 1 1 2 2 2 3 3 3 1

new old old new old old new old old
11(AC) 1 1 3 2 2 1 3 3 2

D : I I I I I I I I I

D : I I I I I I I I I

= − = − = −

= − = − = −
 (16) 

 

Phase swaps (R1 and R2, above) combine with the above connections to create 6 different ways 
to connect a delta. A mathematical way to say the effect of the 6 possible delta connections on 
net phase current is given below. As with the wye connections, there are six 3x3 matrices that 
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represent how the winding currents could be transformed by the various delta connections. To 
perform all transformations listed below, two additional matrix transformation operations, D1 and 
D2, are needed over what was introduced for the wye transformations. Actually, only one of 
these is required. Any D1 (or D11) transformation can be restated in terms of a D11 (or D1) 
operation. For instance, D1 = -1 x R1 x D11 (compare (17) and (22), below). 
 
Delta Transformations 
 

D1 (DAB): 
U 1

V 2

W 3

I 1 1 0 k 0 0

I 0 1 1 0 k 0

I 1 0 1 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 1 φ 123I = D × k ×φ  (17) 

 

D5 (D1 x R2 swap): 
U 1

V 2

W 3

I 1 0 1 k 0 0

I 1 1 0 0 k 0

I 0 1 1 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 2 1 φ 123I = R × D × k ×φ  (18) 

 

D9 (D1 x R1 swap): 
U 1

V 2

W 3

I 0 1 1 k 0 0

I 1 0 1 0 k 0

I 1 1 0 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 1 1 φ 123I = R × D × k ×φ  (19) 

 

D11 (DAC): 
U 1

V 2

W 3

I 1 0 1 k 0 0

I 1 1 0 0 k 0

I 0 1 1 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 11 φ 123I = D × k ×φ  (20) 

 

D3 (D11 x R2 swap): 
U 1

V 2

W 3

I 0 1 1 k 0 0

I 1 0 1 0 k 0

I 1 1 0 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 2 11 φ 123I = R × D ×k ×φ  (21) 

 

D7 (D11 x R1 swap): 
U 1

V 2

W 3

I 1 1 0 k 0 0

I 0 1 1 0 k 0

I 1 0 1 0 0 k

ϕ

ϕ

ϕ

 − ϕ     
      = − ϕ      
      − ϕ      

 UVW 1 11 φ 123I = R ×D × k ×φ  (22) 

 

where kφ is as defined by (3) for the particular winding. 
 
Similar to what was seen for the wye connections, one might say that there are only 3 unique 
matrices above. Every one can be written of as the negative of one of the other matrices in the 
list.  
 
For eventual calculation of the overall transformation equations we will need to know the 
transformer turns ratio. Referring to figures 10 and 16 for winding numbers, in a delta/wye and 
delta/delta transformer, the turns ratios are: 
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D,LLW1
Dy

W 4 y,LL

D,LLW1
Dd

W 4 d,LL

VN
Dy Turns Ratio:    R 3

N V

VN
Dd Turns Ratio:    R

N V

= =

= =
 (23) 

Double Delta Transformations 
A double delta refers to the case where there are two delta transformations in series. We can 
simplify the equations somewhat by pre-multiplying the two matrices together. Some examples 
of double delta transformation matrices include: 
 

 

1 1 0 1 1 0 1 2 1

0 1 1 0 1 1 1 1 2

1 0 1 1 0 1 2 1 1

− − −     
     = = − ⋅ − = −     
     − − −     

1x1 1 1DD D ×D  (24) 

 

 

1 1 0 1 0 1 2 1 1

0 1 1 1 1 0 1 2 1

1 0 1 0 1 1 1 1 2

− − − −     
     = − ⋅ − = − − =     
     − − − −     

1x11 1 11 2 1x1DD = D ×D -1× R ×DD  (25) 

 

 

1 0 1 1 0 1 1 1 2

1 1 0 1 1 0 2 1 1

0 1 1 0 1 1 1 2 1

− − −     
     = − ⋅ − = − =     
     − − −     

11x11 11 11 1 1x1DD = D ×D R × DD  (26) 

 
Note the double deltas found in normal practice can be redefined as a combination of DD1x1, R1, 
R2, and -1 transformation factors. 
 
The double delta transformation does not arise too often, but it is physically possible, does 
occur, and is easy enough for relay compensation. Targeting and relay testing will be especially 
problematic whenever a double delta is utilized because current on any phase is seen in all the 
differential comparators.  

Zigzag Winding Transformations 
To analyze current across a zigzag winding, let us continue to assume that, in balanced 
conditions, all load flux in each leg sums to zero.  
 
Use the Z1UV transformer of Figure 7 for our discussion (one can also refer to Figure 18) and 
assume the flux on the primary winding set will be named φU,V,W. Taking into account that φW4,5,6 
can be restated in terms of their equivalent φW1,2,3 the flux balance says that: 
 

 
U,Pri W1 W3

V,Pri W2 W1

W,Pri W3 W2

0

0

0

ϕ + ϕ − ϕ =
φ + ϕ − ϕ =

φ + ϕ − ϕ =
 (27) 

 
Let us convert the flux to the equivalent current equations, using (1). We have: 
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( )
( )
( )

Pr i C U,Pr i Z C U,Z W,Z

Pr i C V,Pr i Z C V,Z U,Z

Pr i C W,Pr i Z C W,Z V,Z

N k I N k I I 0

N k I N k I I 0

N k I N k I I 0

+ − =

+ − =

+ − =

 (28) 

 
Solving (25) for IUVW, primary: 
 

 

( )

( )

( )

Z
U,Pr i U,Z W,Z

Pr i

Z
V,Pr i V,Z U,Z

Pr i

Z
W,Pr i W,Z V,Z

Pr i

N
I I I

N

N
I I I

N

N
I I I

N

= − −

= − −

= − −

 (29) 

 
Expressing this in matrix form: 
 

 
U.Pri U,Z

Z
V.Pri V,Z

Pr i
W,Pri W,Z

I 1 0 1 I
N

I 1 1 0 I
N

I 0 1 1 I

   − 
    = − −    
    −    

 (30) 

 
The analysis will start by viewing the Z winding set side as an effective wye connection; terminal 
current is equal to winding current. We wish to see how the current will appear to the lines on 
the other side of the transformer. An examination of (29) and (30) will show that the primary will 
see the secondary in a fashion that is similar to a delta transformation.  
 
Using equations (1) and (2), let us convert (30) to an equation closer to the format used for the 
wye and delta transformations earlier in the paper. Also note that when solving (28) for IPri we 
introduced a negative correlation between primary current and secondary current. We do not 
want the negative correlation. We want to have the concept of a positive flux creates a positive 
current on both windings, so we will introduce an “x -1” factor. 
 

 
U,Pri ,z 1(U,Z)

Z
V,Pri ,z 2(V,Z)

Pr i
W,Pri ,z 3(W,Z)

I 1 0 1 k 0 0
N

I 1 1 0 0 k 0
N

I 0 1 1 0 0 k

ϕ

ϕ

ϕ

     − ϕ 
      = − ϕ      
      − ϕ      

 (31) 

 
where kφ,Z=1/(NZkC). Note that the matrix is the same as for a D11 connection, typical of all the 
wye-zigzag connection transformations. 
 
We can reorganize this to the form of the delta and wye winding equations. We need two 
different equations: one for the transformer as seen from the zigzag side bushings and one as 
seen from the primary side bushings. First, from the zigzag side, the current in the zigzag 
windings has the same transformation as a Y0 connection (though other Y# transformations are 
possible via phase swaps and winding connection reversals). From the high side we will have a 
variety of transformation equations that vary with how equations (27) through (30) work out for 
the particular configuration. If the primary is connected in delta, the equations have additional 
transformation factors, described below. 
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Zigzag Transformations, Seen From Zigzag Side 
 

ZZ Side 
U,Z ,z 1

V.Z ,z 2

W,Z ,z 3

I 1 0 0 k 0 0

I 0 1 0 0 k 0

I 0 0 1 0 0 k

ϕ

ϕ

ϕ

   ϕ   
      = ϕ      
      ϕ      

 UVW φ,Z 123I = 1×k ×φ  (32) 

 

where  Z
Z C

1
k

N kϕ = . 

 
Phase swaps and winding connection reversal will affect the transformation equations by adding 
-1, R1, and R2 transformation factors. 
 
Zigzag Transformations, Seen From Wye Primary 
 

Z1 (ZAB/UV): 
U,Pr i ,Pr i 1

V,Pr i ,Pr i 2

W,Pr i ,Pr i 3

I 1 0 1 k 0 0

I 1 1 0 0 k 0

I 0 1 1 0 0 k

ϕ

ϕ

ϕ

   − ϕ   
      = − ϕ      
      − ϕ      

 UVW 11 φ,Pri 123I = D × k ×φ  (33) 

 

Z7 (=-Z1): 
U,Pr i ,Pr i 1

V,Pr i ,Pr i 2

W,Pr i ,Pr i 3

I 1 0 1 k 0 0

I 1 1 0 0 k 0

I 0 1 1 0 0 k

ϕ

ϕ

ϕ

   − ϕ   
      = − ϕ      
      − ϕ      

 11UVW φ,Pri 123I = -1× D × k ×φ  (34) 

 

Z11 (ZAC/UW): 
U,Pr i ,Pr i 1

V,Pr i ,Pr i 2

W,Pr i ,Pr i 3

I 1 1 0 k 0 0

I 0 1 1 0 k 0

I 1 0 1 0 0 k

ϕ

ϕ

ϕ

   − ϕ   
      = − ϕ      
      − ϕ      

 UVW 1 φ,Pri 123I = D ×k ×φ  (35) 

 

Z5 (=-Z11): 
U,Pr i ,Pr i 1

V,Pr i ,Pr i 2

W,Pr i ,Pr i 3

I 1 1 0 k 0 0

I 0 1 1 0 k 0

I 1 0 1 0 0 k

ϕ

ϕ

ϕ

   − ϕ   
      = − ϕ      
      − ϕ      

 UVW 1 φ,Pri 123I = -1× D × k ×φ  (36) 

 

where  ,Pr i
Pr i C

1
k

N kϕ = . 

 
Phase swaps and winding connection reversal will affect the transformation equations by adding 
-1, R1, and R2 transformations. 
 
Zigzag Transformations, Seen From D1 Primary 
The zigzag with a delta winding introduces the issue of back to back delta transformations. 
Since a zigzag is effectively a delta as seen from the primary, we will have a “double delta” 
transformation. The approach is to simply multiply the two delta effects together as was seen in 
the double delta discussions above. i.e., if a primary is connected in delta, we simply add the 
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appropriate delta transformation to the overall transformation equation. The equation can be 
simplified a bit using the D1xD11 transformation previously mentioned (25). 
 

D1xZ1 (ZUV): 
U,Pr i ,Pr i 1

V,Pr i ,Pr i 2

W,Pr i ,Pr i 3

I 2 1 1 k 0 0

I 1 2 1 0 k 0

I 1 1 2 0 0 k

ϕ

ϕ

ϕ

   − − ϕ   
      = − − ϕ      
      − − ϕ      

 UVW 1 11 φ 123I = D × D ×k ×φ  (37) 

 

D1xZ11 (ZUW): 
U,Pr i ,Pr i 1

V,Pr i ,Pr i 2

W,Pr i ,Pr i 3

I 1 2 1 k 0 0

I 1 1 2 0 k 0

I 2 1 1 0 0 k

ϕ

ϕ

ϕ

   − ϕ   
      = − ϕ      
      − ϕ      

 UVW 1 1 φ 123I = D × D × k ×φ  (38) 

 
The reader can use this example to determine how a D11 connection changes the equations. 
 
For eventual calculation of overall transformation equations we will need to know the 
transformer turns ratio. Referring to Figure 18 and 19 for winding numbers and looking at the 
windings on one core leg, in a classical zigzag transformer, the turns ratios are: 
 

 

W 4 W7

Y,LLW1
Yz

W 4 W7 Z,LL

D,LLW1
Dz

W 4 W7 Z,LL

N N

VN
Yz Ratio:    R 3

N  or N V

VN
Dz Ratio:    R 3

N  or N V

=

= =

= =

 (39) 

 
As a side note, setting N4 and N7 different from one another allows a continuous variety of 
phase shifts across the transformer. Such transformers are used in harmonic cancellation 
techniques in VFD applications and in large phase shifting transformers used for power flow 
control in important transmission lines.  

CT Connections Transformations 
A wye CT is fairly straightforward and simply changes the transformer current by a specific ratio. 
A complication can occur if a CT connection is made backwards such that it adds a -1 factor to 
the current balance equation. This -1 factor might arise if one of the CT sets is connected 
backwards relative to the relay manufacturer’s instruction manual. 
 

YCT0 : 
U,Relay CT U

V,Relay CT V

CT WW,Relay

I N 0 0 I

I 0 N 0 I

0 0 N II

     
     =     
         

 UVW,Relay CT UVWI = N × I  (40) 

 

YCT6 : 
U,Relay CT U

V,Relay CT V

CT WW,Relay

I N 0 0 I

I 0 N 0 I

0 0 N II

  −   
     = −     
     −    

 UVW,Relay CT UVWI = -1× N × I  (41) 
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where NCT is a step-down factor of: 
 

 Sec
CT

Pr i

I
N

I
=   (42) 

 
A delta CT complicates the transformer differential relay compensation by adding a second 
delta transformation effect. A delta CT connection will virtually always be a D1 or a D11 form 
transformation, but other connections are not impossible.  
 

DCT1 (DAB): 
U,Relay CT U

V,Relay CT V

CT WW,Relay

I N 0 0 1 1 0 I

I 0 N 0 0 1 1 I

0 0 N 1 0 1 II

  −     
       = −       
       −      

 UVW,Relay CT 1 UVWI = N ×D × I  (43) 

 

DCT11 (DAC): 
U,Relay CT U

V,Relay CT V

CT WW,Relay

I N 0 0 1 0 1 I

I 0 N 0 1 1 0 I

0 0 N 0 1 1 II

  −     
       = −       
       −      

 UVW,Relay CT 11 UVWI = N ×D × I  (44) 

 
It might be possible also to have reverse connected CTs that are then connected in delta, 
resulting in negated versions of DCT1 and DCT11, creating DCT7 and DCT5, respectively. 
 

Net Compensation Equations 

Relay Differential Comparator Equations 
As previously discussed, the assumption is that when the transformer is operating correctly, the 
flux on each leg due to load current (or external fault current) sums to zero. A differential relay 
has three comparators. The three comparators compare through current (current sensed at 
each input) to error current (difference between the two through currents), ideally on each phase 
of the transformer, but when delta connections are between the relay and the transformer, delta 
summations are monitored instead. The details of what the relay does with the current it senses 
in the comparator is beyond the scope of the paper and varies with each relay manufacturer, but 
the current the comparator is monitoring is about the same in most current differential relays.  
 
The error current equation below assumes the relay is configured in such a way that current into 
one winding set and out the other winding set results in positive current into one input of the 
relay and negative current (i.e., 180° phase shift) into the other input. The summation (not the 
difference) of the two currents would therefore normally be 0. This approach is in accordance 
with the previously described flux balance equation, (5). Hence, the three differential 
comparators in the relay monitor: 
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 U Comparator: 
Compensated Compensated
1 4

Compensated Compensated
1 4

Through Current:      I and I

Error Current:      I I+
 (45) 

 

 V Comparator: 
Compensated Compensated
2 5

Compensated Compensated
2 5

Through Current:      I and I

Error Current:      I I+
 (46) 

 

 W Comparator: 
Compensated Compensated
3 6

Compensated Compensated
3 6

Through Current:      I and I

Error Current:      I I+
 (47) 

 

The comparators were named U, V, and W above, but be aware that this can lead to some 
confusion on faulted phase identification when delta connections are involved due to the 
associated inter-connection of phases. 

Example Compensation Equations 

Each transformer or CT connection has its own effect on the current that eventually makes its 
way to the relay. Let’s look at a few examples to see how this works out. 

Example 1:  Dy1 Transformer 
Dy1 Transformer, 115kV (D1(AB)) / 13.8kV (Y0);  
20MVA (IFull Load =100A @ 115kV and 837A @ 13.8kV);  
Primary CTs 200:5, Y0;  
Secondary CTs 1200:5, YCT6 (note the CT has been inverted). 
 
Current @ relay, 115kV: 
 .115UVW 1 φ,115 123I = D × k ×φ  (see Eq. 17) 

 ,115UVW,Relay CT,115 UVWI = N × I  (see Eq. 40)  

 
The net 115kV equation is:  
 UVW,Relay,115 CT,115 1 φ,115 123I = N × D × k ×φ  (48) 

 
Current @ relay, 13.8kV 
 ,13.8 456UVW φ,13.8I = 1×k ×φ  (see Eq. 10) 

 ,13.8UVW,Relay CT,13.8 UVW,13.8I = -1× N × I  (see Eq. 41) 

 
The net 13.8kV equation is:  
 13.8 456UVW,Relay, CT,13.8 φ,13.8I = -1× N ×k ×φ  (49) 

 
Note that in balanced conditions φ123 + φ456 = 0, and as seen by comparing (48) and (49), what 
started out as a balanced condition in the transformer has become two different current values 
at the relay. The balanced flux has been modified by: 

• Transformer Turns (part of kφ) 
• Transformer winding connections 
• CT ratios 
• CT connections 
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The approach used in numeric relays is to compensate by adding multiplying factors CF115 and 
CF13.8 to (48) to create a target multiplication factor that puts the equivalency back into the 
sensed current, so that the error current is 0 in the differential comparator equations (43), (44), 
and (45). The initial unmodified compensation equation is: 
 

 ( ) ( )456
      115 CT,115 1 φ,115 123 13.8 CT,13.8 φ,13.8CF × N × D × k ×φ + CF × -1× N × k ×φ = 0  (50) 

 
The part in the parenthesis in (50) represents the two sets of current inputs to the relay IRelay. 
and CF# represents the math the relay needs to apply to the current to see the currents as 
equivalent. Let us simplify (50) by first collecting the magnitude compensation adjustments to 
the left. The resultant equation is: 
 

 ( ) ( )( ) [ ]456
 
 

-1 -1
115 φ,115 φ,13.8 CT,115 CT,13.8 1 123 13.8CF × -1× k × k × N × N × D ×φ + CF ×φ = 0  (51) 

 
This allows us to state CF115 in terms of only phase compensation adjustments and CF13.8 in 
terms of magnitude and phase adjustments. In this case, CF115 has no phase compensation 
adjustments, but CF13.8 has both magnitude and phase adjustments. To make (51) true, we 
need: 
 
 115CF = 1  (52) 

 
 ( )-1 -1

13.8 φ,115 φ,13.8 CT,115 CT,13.8 1CF = -1×k ×k ×N × N ×D  (53) 

CF13.8 Magnitude Compensation Factor 
The magnitude effect has to account for the transformer and CT turns ratio. Recall from (1) and 
(2) that kφ,# = 1/(N#kC) where N# is the # of transformer coil turns, and kC is a constant for the 
core design. Recall also the turns ratio calculations of (23). The overall ratio of kφ,# is: 
 

 Turns,13.8-1
,115 ,13.8

Turns,115

N 13.8
k k 0.069282

N 3 115
φ φ× = = =

⋅
 (54) 

 
The CT ratio factor (42) is:  
 

 -1
CT,115 CT,13.8

5
200N N 6

5
1200

⋅ = =  (55) 

 
Hence, the relay multiplies the current coming into the 13.8kV side by the factor: 
 

 

[ ]
-0.415692 0 0

0 -0.415692 0

0 0 -0.415692

  
 
 =  
  

-1 -1
13.8,Mag φ,115 φ,13.8 CT,115 CT,13.8CF = -1× k ×k ×N × N = -1× 0.069282 × 6

 (56) 
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Some may note a missing “sqrt (3)” factor in this equation that is used to reduce the magnitude 
of current that is seen after a delta summation. This matter will be discussed later, under 
“Application to Protective Relay Settings.”  

Net Compensation Equations 
A phase compensation factor is required when different phase transformation factors (e.g., R# or 
D#) show up in the two phase compensation factors, such as was found in (52) and (53).  
 
The compensation is on the currents making it to the relay, so let us give some names to the 
relay currents: 
 

 
1,Relay 115,U,Relay

2,Relay 115,V,Relay

3,Relay 115,W,Relay

I I

I I

I I

   
   

=   
   
   

 
4,Relay 13.8,U,Relay

5,Relay 13.8,V,Relay

6,Relay 13.8,W,Relay

I I

I I

I I

   
   

=   
   
   

 (57) 

 
The 115kV phase compensation is the most basic equation possible: 
 

 
Compensated
1,Relay 1,Relay

Compensated
2,Relay 2,Relay

Compensated
3,Relay 3,Relay

I I1 0 0

I 0 1 0 I

0 0 1I I

    
    =    
        

Compensated
123,Relay 115,Phase 123,Relay

Compensated
123,Relay 123,Relay

I = CF × I

I = 1× I



 (58) 

 
The overall (magnitude and phase) 13.8kV compensation equation is: 
 

 ( )
Compensated
4,Relay

Compensated
5,Relay

Compensated
6,Relay

I

I

I

 
 

= 
 
  

Compensated
456,Relay 13.8,Mag 13.8,Phase 456,Relay

Compensated -1 -1
456,Relay φ,115 φ,13.8 CT,115 CT,13.8 1 456,Relay

I = CF × CF × I

I = -1× k × k × N × N × D × I

4,Relay

5,Relay

6,Relay

I0.415692 0 0 1 1 0

0 0.415692 0 0 1 1 I

0 0 0.415692 1 0 1 I

 − −   
    − −     
    − −     

 (59) 

 
This in clearer terms is: 
 

 

( )
( )
( )

Compensated
4,Relay 4,Relay 5,Relay

Compensated
5,Relay 5,Relay 6,Relay

Compensated
6,Relay 6,Relay 4,Relay

I 0.415692 I I

I 0.415692 I I

I 0.415692 I I

= − ⋅ −

= − ⋅ −

= − ⋅ −

 (60) 

 
The results of (58) and (60) are then fed into the comparator equations (45), (46), and (47).  
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Example 2 - Dz2 with Delta CT Configuration 
Let us look at a more complicated application that gives a more involved application of the 
phase transformation factors. We will use a fairly uncommon transformer and assume someone 
selects fairly strange CT connections. Let’s see if and how the relay could compensate. 
 
Dz2 Transformer 
115kV (D1) / 13.8kV (Z11(AC/UW))  
20MVA (for IFull Load =100A @ 115kV and 837A @ 13.8kV) 
Primary CTs 200:5, Y0.  
Secondary CTs 1200:5, D11 

 
The net 115kV equation is (Note Zigzag with Delta primary created Double Delta):  
 
 UVW,Relay,115 CT,115 1 1 φ,115 123I = 1× N × D ×D ×k ×φ  (61) 

 
The net 13.8kV equation is (Note CT is DCT,11): 
 
 456UVW,Relay,13.8 11 CT,13.8 φ,13.8I = D × N × k ×φ  (62) 

 
The overall compensation equation is: 
 

 
( )

( )456

  
  

115 CT,115 1 1 φ,115 123

13.8 11 CT,13.8 φ,13.8

CF × 1× N × D ×D × k ×φ +

CF × D × N ×k ×φ = 0
 (63) 

 
Again, we can rearrange (63) to bring the magnitude compensation factors to one side of the 
equation to allow us to state CF115 in terms of only phase compensation adjustments, and CF13.8 
in terms of magnitude and phase adjustments. 
 

 
( ) ( )( )

( )456

 
 

  

-1 -1
115 φ,115 φ,13.8 CT,115 CT,13.8 1 1 123

13.8 11

CF × k ×k × N ×N × D × D ×φ +

CF × D ×φ = 0
 (64) 

 
and hence to make (64) true, we need: 
 
 115 11CF = D   (65) 

 
 ( ) ( )-1 -1

13.8 φ,115 φ,13.8 CT,115 CT,13.8 1 1CF = k ×k ×N × N × D × D  (66) 

 
The magnitude adjustment factor is nearly the same as the previous example, but the Y6 CT 
connection added a negative in the previous example, and since this is a delta/zigzag winding, 
the kφ is slightly different. Applying (3) and (39) we will find: 
 

 Turns,13.8-1
,115 ,13.8

Turns,115

N 3 13.8
k k 0.040

N 115φ φ
⋅× = = =  (67) 

 
and the CT ratio is 6, as it was in the previous example. The net magnitude adjustment factor is: 
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[ ]
0.240 0 0

0 0.240 0

0 0 0.240

  
 
 =  
  

-1 -1
13.8,Mag φ,115 φ,13.8 CT,115 CT,13.8CF = k × k × N × N = 0.040 × 6

 (68) 

 
The 115kV phase compensation equation is: 
 

 
Compensated
1,Relay 1,Relay

Compensated
2,Relay 2,Relay

Compensated
3,Relay 3,Relay

I I1 0 1

I 1 1 0 I

0 1 1I I

  − 
   = −   
   −    

Compensated
123,Relay 115,Phase 123,Relay

Compensated
123,Relay 11 123,Relay

I = CF × I

I = D × I





 


 (69) 

 
This in clearer terms is: 
 

 

( )
( )
( )

Compensated
1,Relay 1,Relay 3,Relay

Compensated
2,Relay 2,Relay 1,Relay

Compensated
3,Relay 3,Relay 2,Relay

I I I

I I I

I I I

= −

= −

= −

 (70) 

 
The 13.8kV compensation equation includes a “double delta” D1xD1 factor, introduced 
previously (24). The net13.8kV magnitude and phase compensation equation is: 
 

 ( ) ( )
456

456

Compensated
4,Relay

Compensated
5,Relay

Compensated
6,Relay

I

I

I

 
 

= 
 
  

Compensated
,Relay 13.8,Mag 13.8,Phase 456,Relay

Compensated -1 -1
,Relay φ,115 φ,13.8 CT,115 CT,13.8 1 1 456,Relay

I = CF × CF × I

I = k × k × N × N × D ×D × I

4,Relay

5,Relay

6,Relay

I0.240 0 0 1 2 1

0 0.240 0 1 1 2 I

0 0 0.240 2 1 1 I

 −   
    −     
    −     

 (71) 

 
In clearer terms, this is: 
 

 

( )
( )
( )

Compensated
4,Relay 4,Relay 6,Relay 5,Relay

Compensated
5,Relay 4,Relay 5,Relay 6,Relay

Compensated
6,Relay 5,Relay 6,Relay 4,Relay

I 0.240 I I 2 I

I 0.240 I I 2 I

I 0.240 I I 2 I

= ⋅ + − ⋅

= ⋅ + − ⋅

= ⋅ + − ⋅

 (72) 

 
The results of (70) and (73) are then fed into the comparator equations (43), (44), and (45). 
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Example 3 - Dy1 but Phase Transformations Cancel Out  
Assume the same system as Example 1 but let us hook the secondary CT in D1. The 
compensation equation (50) becomes: 
 

 ( ) ( )456
      115 CT,115 1 φ,115 123 13.8 1 CT,13.8 φ,13.8CF × N × D × k ×φ + CF × D ×N × k ×φ = 0  (73) 

 
The relay sees the same D1 phase compensation on both inputs and hence the relay adds no 
additional phase compensation transformation to the incoming currents. It will only need to do 
magnitude compensation. The rest of the compensation factor analysis is approximately the 
same as the previous examples so will not be developed. 

Application to Protective Relay Settings 

A few notes on how the above material works out in a numeric current differential relay: 
 
1) Relay Magnitude Compensation Factors.  
Relays can be configured to adjust for the magnitude of currents via two methods:  
 a) User selected compensation taps. In this classical method the user takes into account the 
transformer ratio and CT ratio that is part of 47, as well as the normal loading that the user 
expects, and selects a current tap that tells the relay what constitutes balanced current 
magnitudes. The taps may include the sqrt(3) factor described in the previous paragraph, 
depending on relay settings instructions from the manufacturer.  
 b) Enter Xfmr parameters and let relay decide compensation factors. In this approach, the 
user enters transformer data, such as voltages, winding configuration, CT ratio, CT 
configuration, and full load MVA, and the relay selects the appropriate current magnitude 
adjustment factor. This approach is more user friendly and likely results in fewer mistakes, but 
there may be an argument that users should know what is going on and not let the relay do their 
thinking for them. 
 c) Some relays allow customers to use either approach a) or b) via a selection in the relay 
logic. 
 
2) Additional 1/Sqrt(3) Factor in Magnitude Adjustments for Delta Configurations 
 When balanced three phase currents are in the transformer, one effect of a D# 
transformation is to increase the magnitude of balanced current by sqrt(3). Some relay 
manufacturers include a 1/sqrt(3) factor in the magnitude compensation factor to remove the 
current increases to balanced current flow that delta transformations cause. Including the sqrt(3) 
inside the relay calculations tends to make relay settings more intuitive to some end users.  
 
3) Per-Unitizing Sensed Current 
 Something a bit more involved is done to current magnitudes than just multiplying the 
current on one input by the magnitude adjustment factor. Current on both inputs are multiplied 
by an appropriate number to bring the current down to a common per-unitized and normalized 
level, commonly referred to as “per unit of tap” (dating back to electromechanical relays). The 
trip decisions and instruction manuals refer to things in a per-unitized manner, so a user has to 
be aware of the per-unitized math that occurs inside the relay. Even beyond the per-unitization 
on a tap basis, in a real world protective relay, if one could monitor the internal machine coding, 
the relay also includes additional scaling of currents to levels that give the best use of the relay’s 
numerical methods and a wide range to the current levels the relay can work with accurately. 
 
4) Configuring the Phase Compensation Equations 
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 It can be seen that just as there are a very large number of possible ways to configure a 
transformer and its CTs, there is a similarly very large number of possible phase compensation 
equations that might be needed. However, the relay does not need to have a library in its 
memory bank of every possible transformer and CT configuration and the resultant phase 
compensation that it must apply. This paper has made some effort to show that many 
transformation equations can be seen as the multiplication of 2 or 3 other transformations. 
Hence, the relay can have a subset of possible transformation equations that can be applied as 
needed to create the overall compensation equation for a given application. Once these 
transformation equations are in the relay memory, the next issue is when and how to apply 
them. The response from the relay manufacturers on how the various transformations are 
selected and used and presented to the end user varies quite a bit.  

• Some manufacturers supply a set of transformation equations and ask the user to decide 
how to apply them, given instructions in the manual that hopefully are sufficient. Extremely 
detailed analysis, such as found in this paper, is not too common though. Documentation 
and instruction manuals are always subject to misunderstanding, especially by engineers 
who have limited time to study the matter. This approach puts the user in the “think hard 
because there is lots of room for messing up” mode. 

• Some relays, especially the basic lower budget versions each manufacturer supplies, have 
a reduced degree of support of all the possible transformers and CT connections. This 
reduces the confusion factor and makes correct setup easier for the mainstream 
applications, but it is done at the expense of flexibility.  

• Some manufacturers make the setting a bit more user friendly by listing the phase 
compensation equations that should be used for a given transformer configuration and 
phase shift. They appear to say that if you know phase shift and a few other items on the 
transformer, these are the equations you want to use. Without a detailed analysis of where 
the equations come from a user might be confused and still make a selection error. 

• Some relay manufacturers attempt to remove the chance of user error by having the user 
state the specific transformer and CT configurations. It becomes the task of the relay internal 
coding to decide which phase compensation equations are proper for the configuration that 
was entered. This approach takes the previous bullet one step farther from a good 
understanding of what is being calculated by the relay, so has its drawbacks too. Hopefully 
this paper supplies the needed information so that a user can reason through what is going 
on inside the relay.  

 

Conclusion/Summary 

Hopefully the reader has learned from the above material, 1) how the myriad of “round the 
clock” power transformers are internally configured, as well as some understanding of the 
nomenclature and figures that are used, 2) the various ways delta and zigzag transformers can 
be configured, 3) the ways that the myriad of possible transformer and CTs connections affect 
the current seen by a transformer differential relay, and 4) how a transformer differential relay 
can numerically compensate for the differences in any transformer configuration to still 
determine balanced current conditions. 
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